

footpath.ai

Predicting network wide cycling ridership with crowdsourced data

Dr Meead Saberi

UNSW Research Centre for Integrated Transport Innovation (rCITI)

🔰 @meeadsaberi

M meead.saberi@unsw.edu.au

What problem are we aiming to solve?

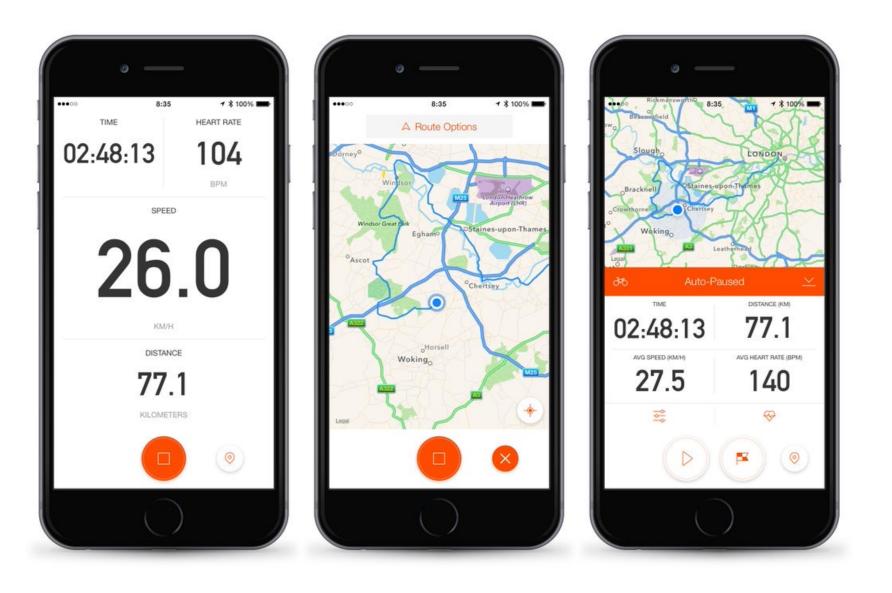
- cycling policies.
 - exposure data.

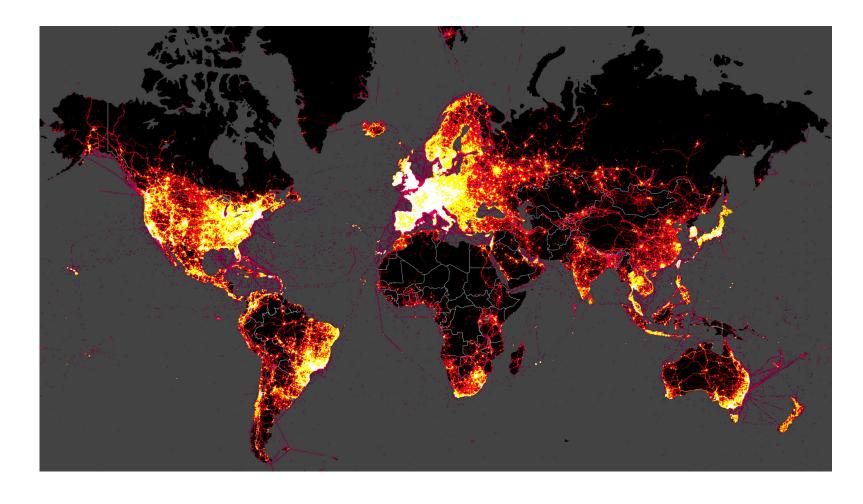
Growing awareness of health, environmental, and economic benefits of active transport have led to an unprecedented commitment to

Lack of robust and continuously collected bicycling volume data is a substantive barrier to planning and safety studies, which require

We have a limited knowledge on how bicycling volumes flow throughout the network.

Crowdsourced cycling data: Strava





How to solve the sampling bias in data?

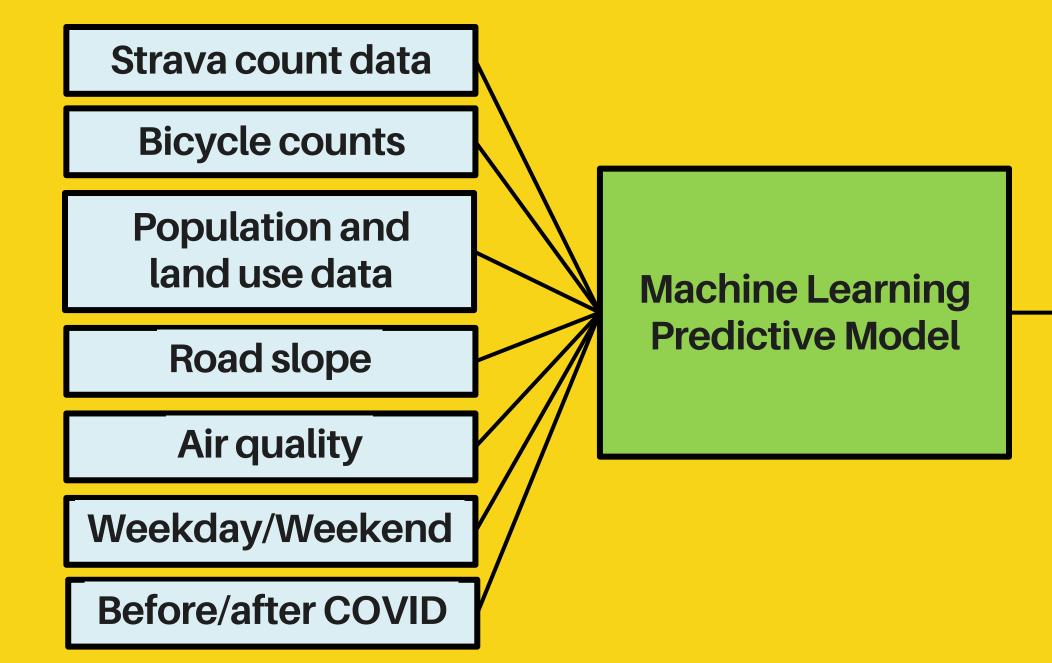
- Strava app.
- data.
- bicyclists.

Strava data is only a sample of bicycling ridership, biased toward people who use the

Strava users are disproportionately young adults (25-35 years in age) and male (Roy et al., 2019). Women, children, older adults, and lowincome bicyclists are under sampled by Strava

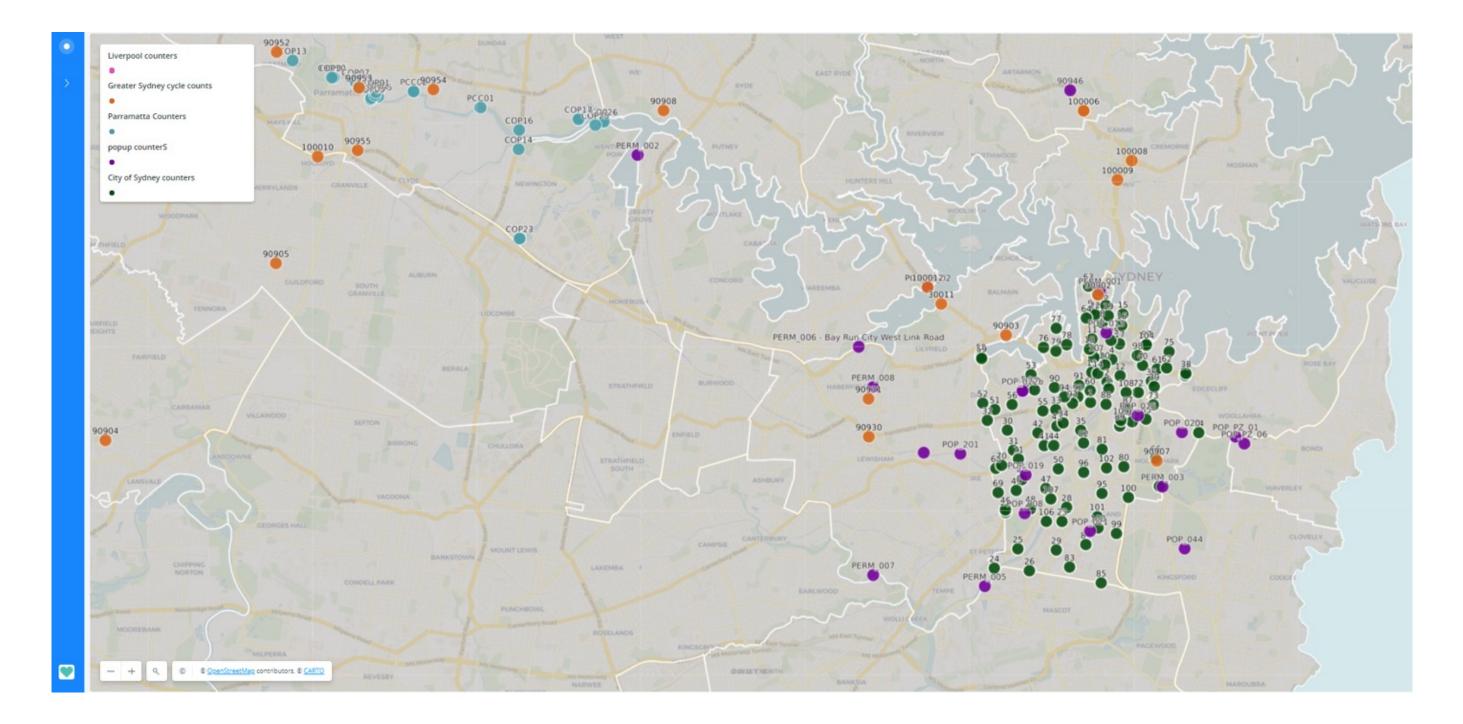
By integrating Strava data with multiple data sources it is possible to generate maps of predicted total bicycling volume that are more representative of all ages and abilities of

Cycling volume prediction model



Link-level cycling volumes Cycling km travelled Number of cycling trips

Location of official cycling counts



5

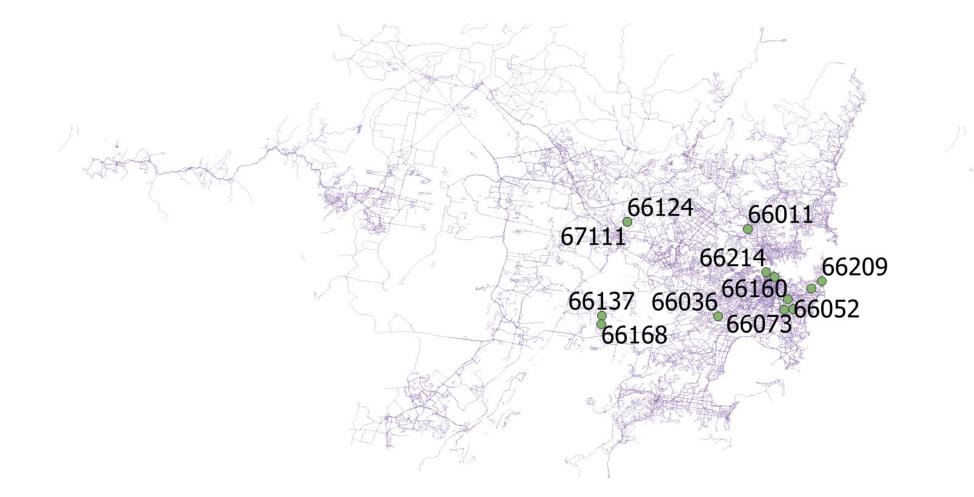
Cycling infrastructure network

Bicycling infrastructure TYPE	٥:	
ALL SELECTED		
MIXED TRAFFIC: ON ROAD FACILITY TYPE - S	7.5k	
SHARED PATH : OFF ROAD FACILITY TYPE - S	6.2k	
ROAD SHOULDER: ON ROAD FACILITY TYPE	1.8k	
BICYCLE PATH: OFF ROAD FACILITY TYPE - FO	253	
ON ROAD FACILITY TYPE - SEPARATED FROM	121	
OTHER	148	

6

Q, SEARCH IN 9 CATEGORIES

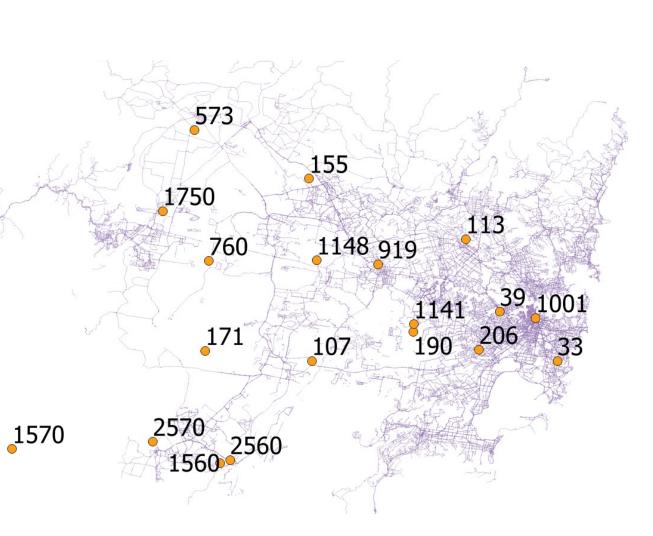
Climate and air quality data



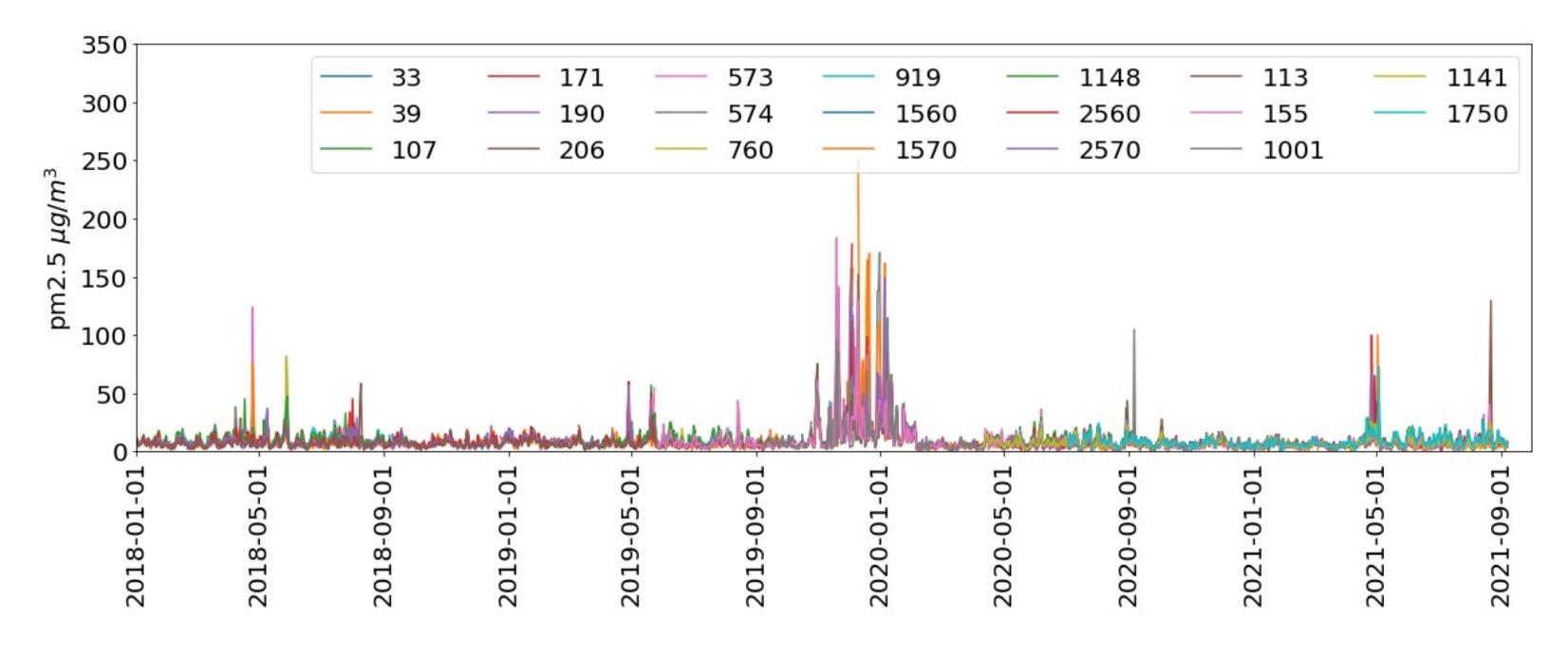
Weather stations

Air quality stations

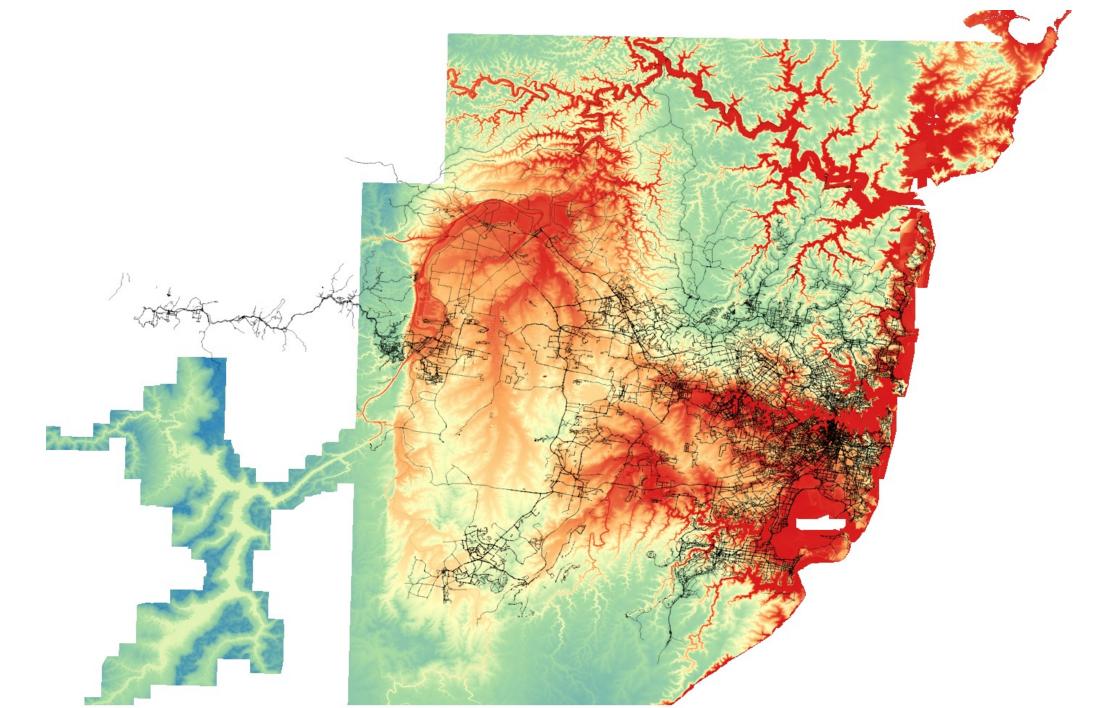
7



Air quality data (PM 2.5)



Topography data



3 models

Linear regression

Very simple to understand and implement

Poisson regression

Appropriate for modelling count data

Decision tree regression

A widely used Machine Learning model

Spatial **Cross** validation

- validation)

Linear and Poisson regressions are estimated from 100 trained different models (10 random splits of training and test set, 10-fold cross

Decision tree regressions are estimated from 1,000 different trained models (10 random splits of training and test set, 10-fold cross validation, 10 different hyperparameter sets)

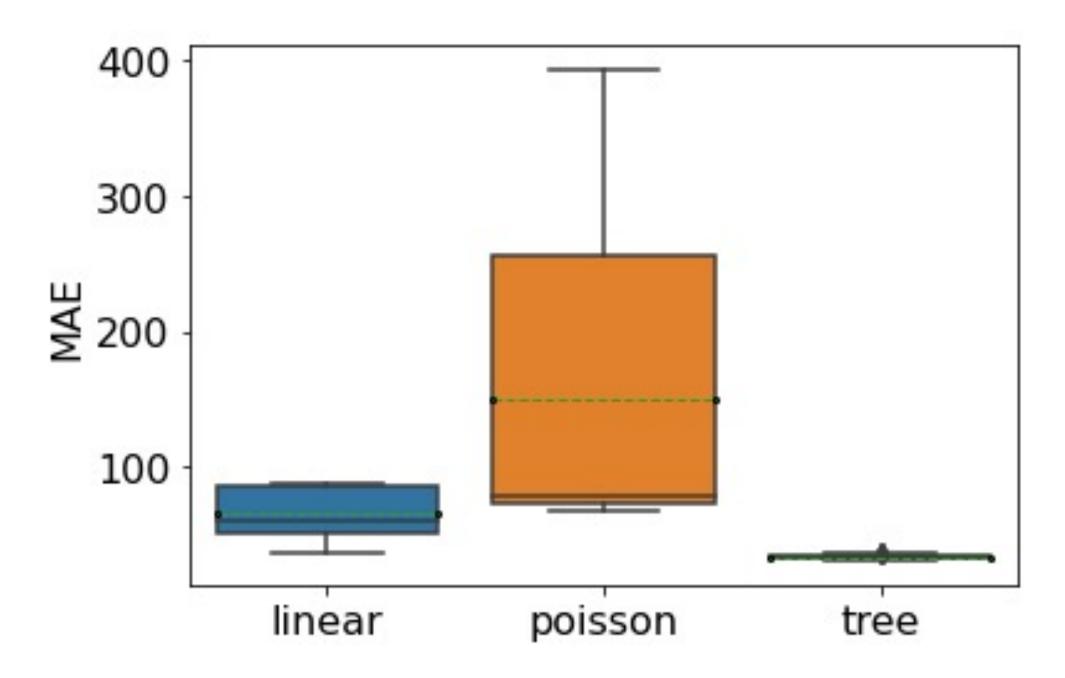
Model goodness of fit

Model	R ²	MAE	RMSE
Linear	0.64	37	50
Poisson	0.60	72	88
Tree	0.82	31	59

MAE: Mean Absolute Error **RMSE: Root Mean Squared Error**

Variables remained in the models: Strava count, Population density, Land use entropy, Weekday, Slope, Pre-COVID and Air quality

Cycling models' predictive power



Estimating prediction intervals instead of point predictions

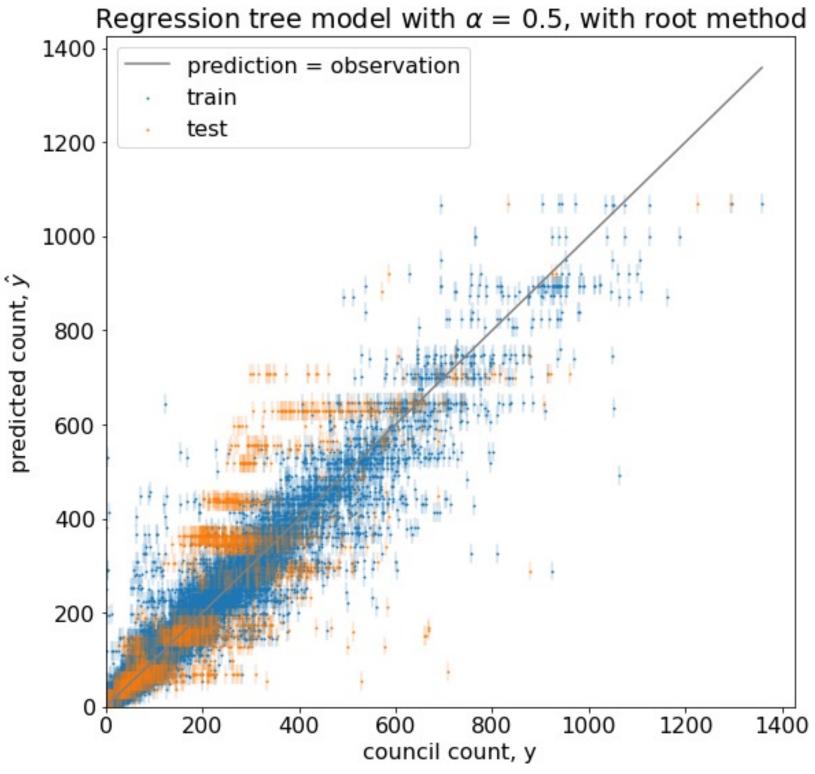
- to determine the residuals.
 - See this for details: of Statistics, 49(1), pp.486-507.

The jackknife method estimates an interval centered at the predicted response of a test point, with the width of the interval determined by the quantiles of leave-one-out residuals.

We use 100-fold cross validation instead of LOO

Barber, R.F., Candes, E.J., Ramdas, A. and Tibshirani, R.J., 2021. Predictive inference with the jackknife+. The Annals

Predicted VS. observed cycling counts

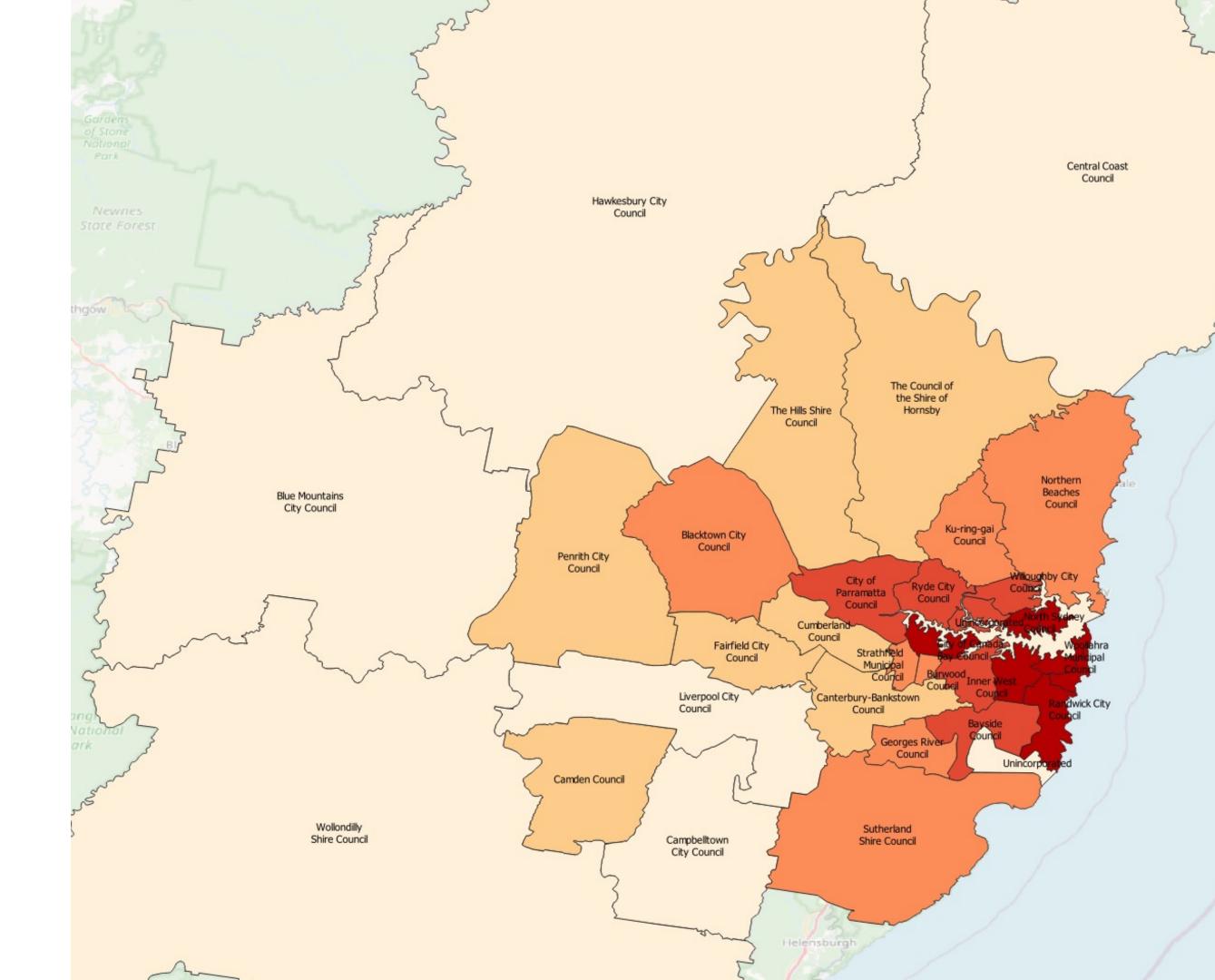


Total number of trips per area

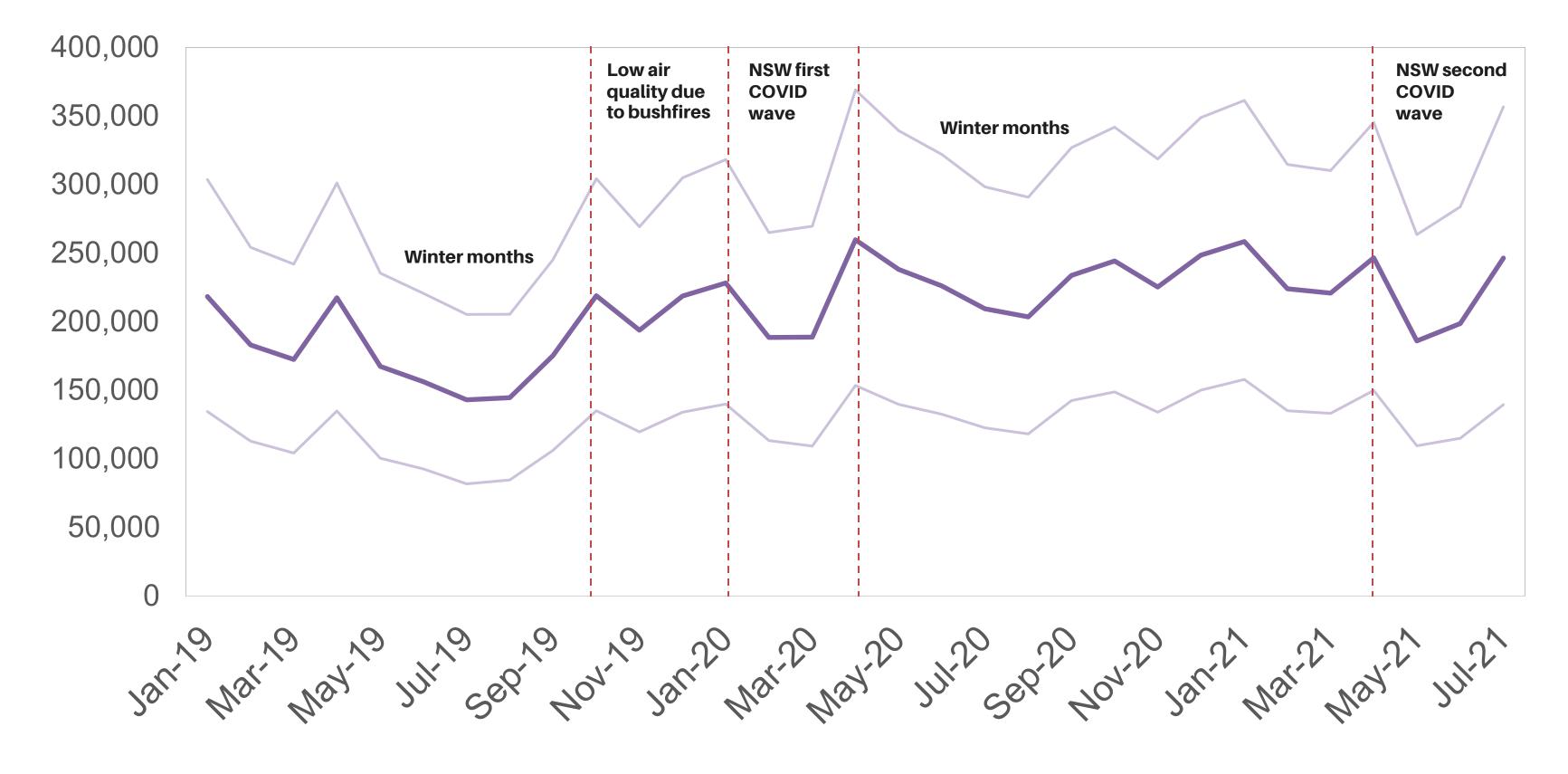
Number of trips/area(km²)

0 - 18
18 - 32
32 - 96
96 - 186
186 - 463

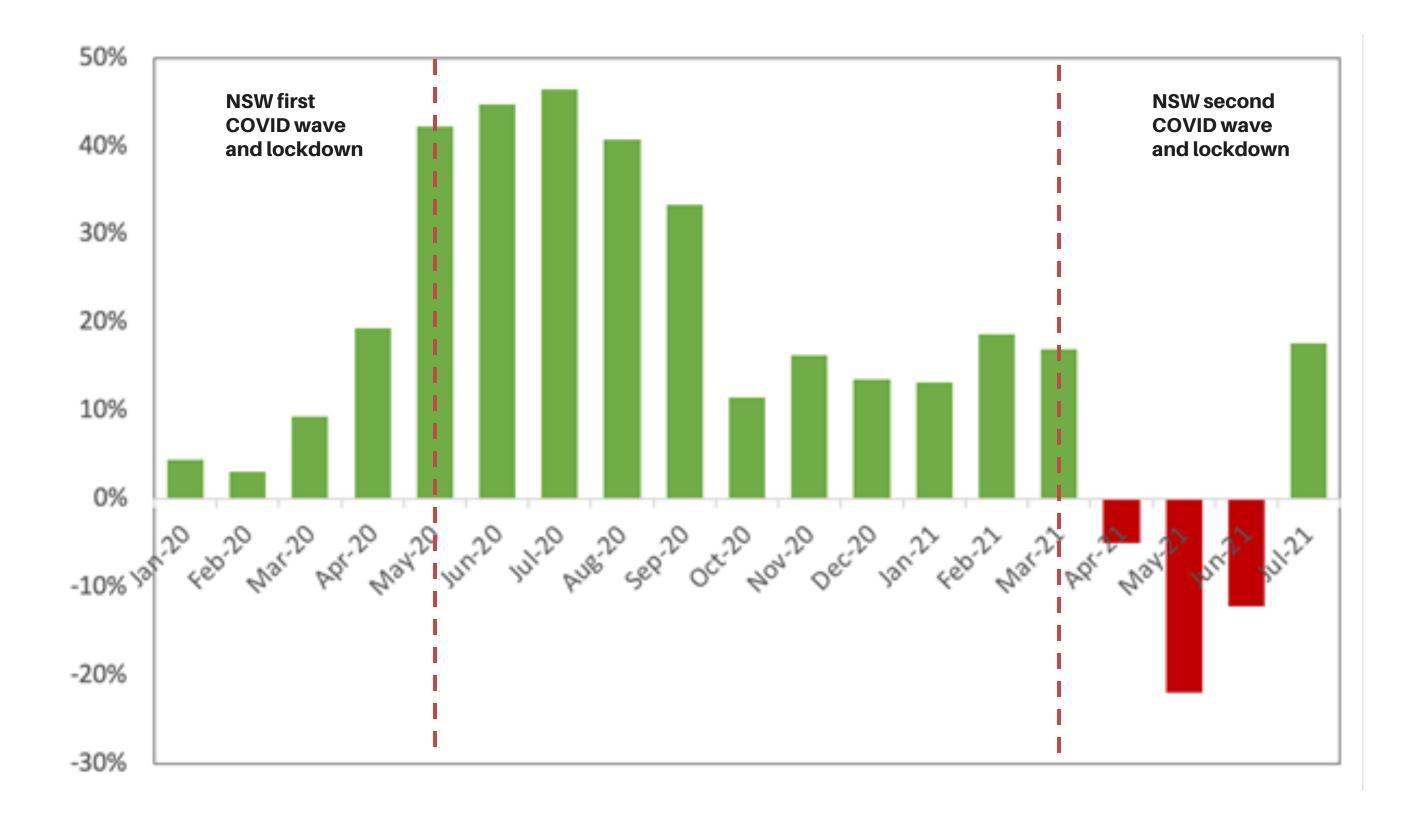
Note: Average cycling trip travel distance is assumed 4.7 km.



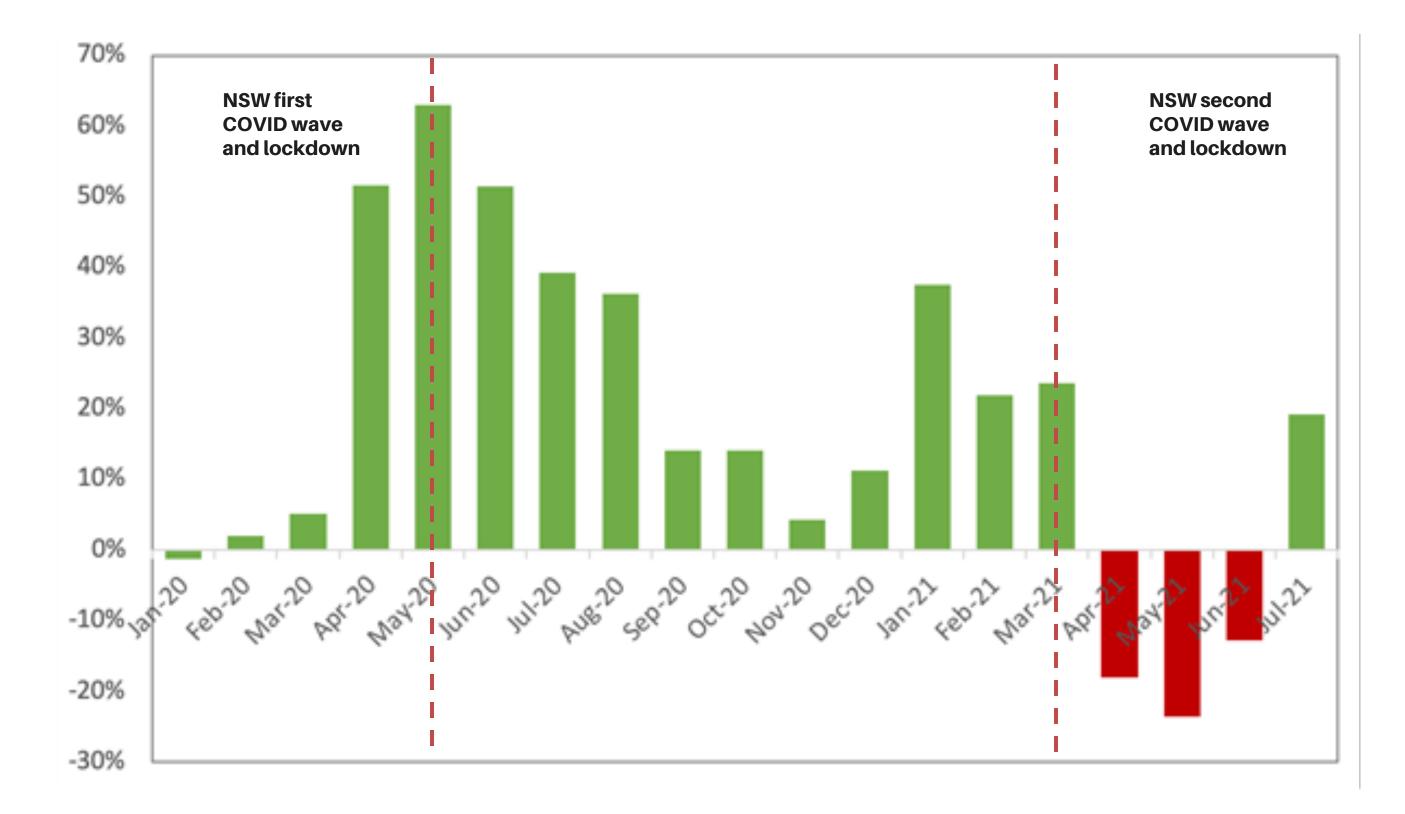
Average weekday trips



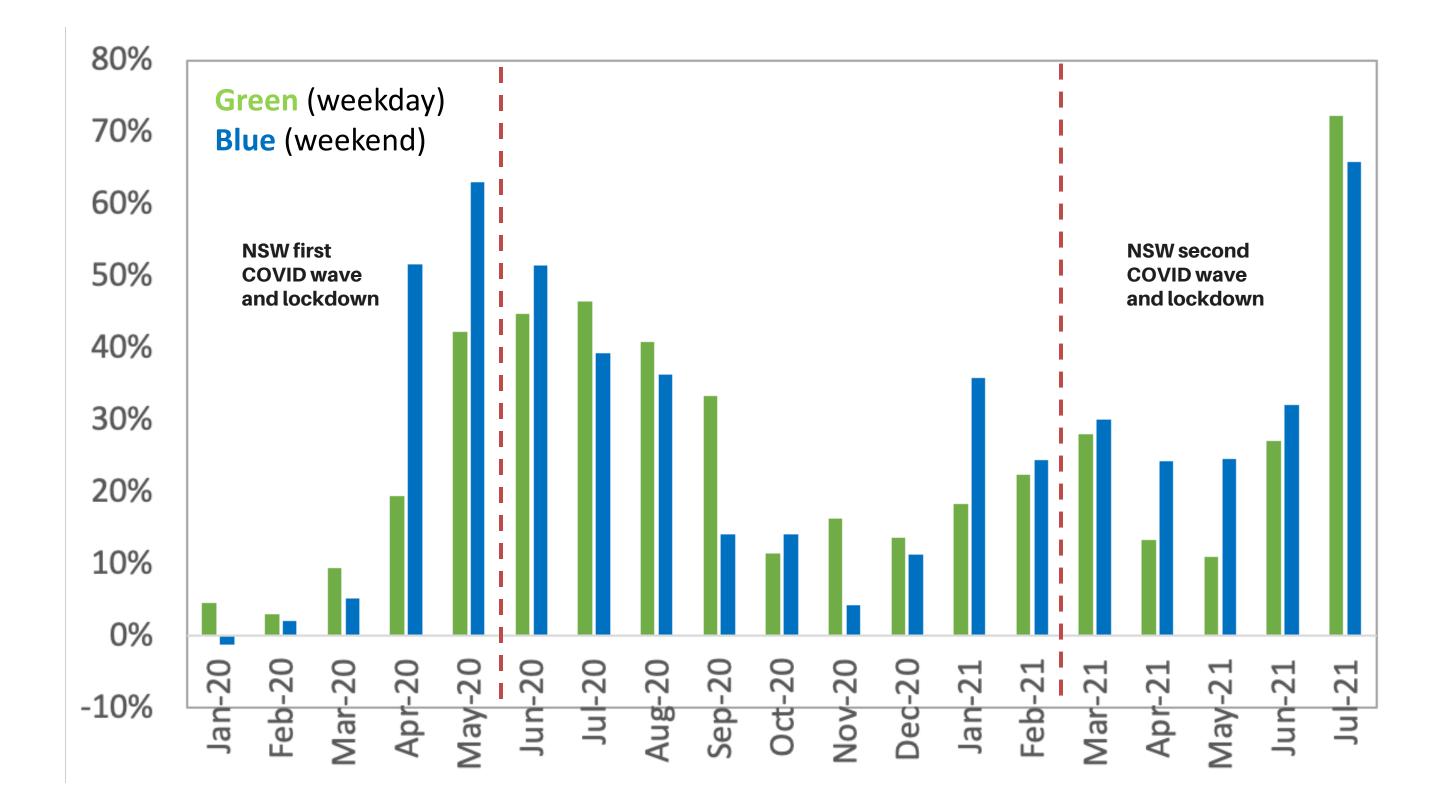
YOY percentage change (weekday)

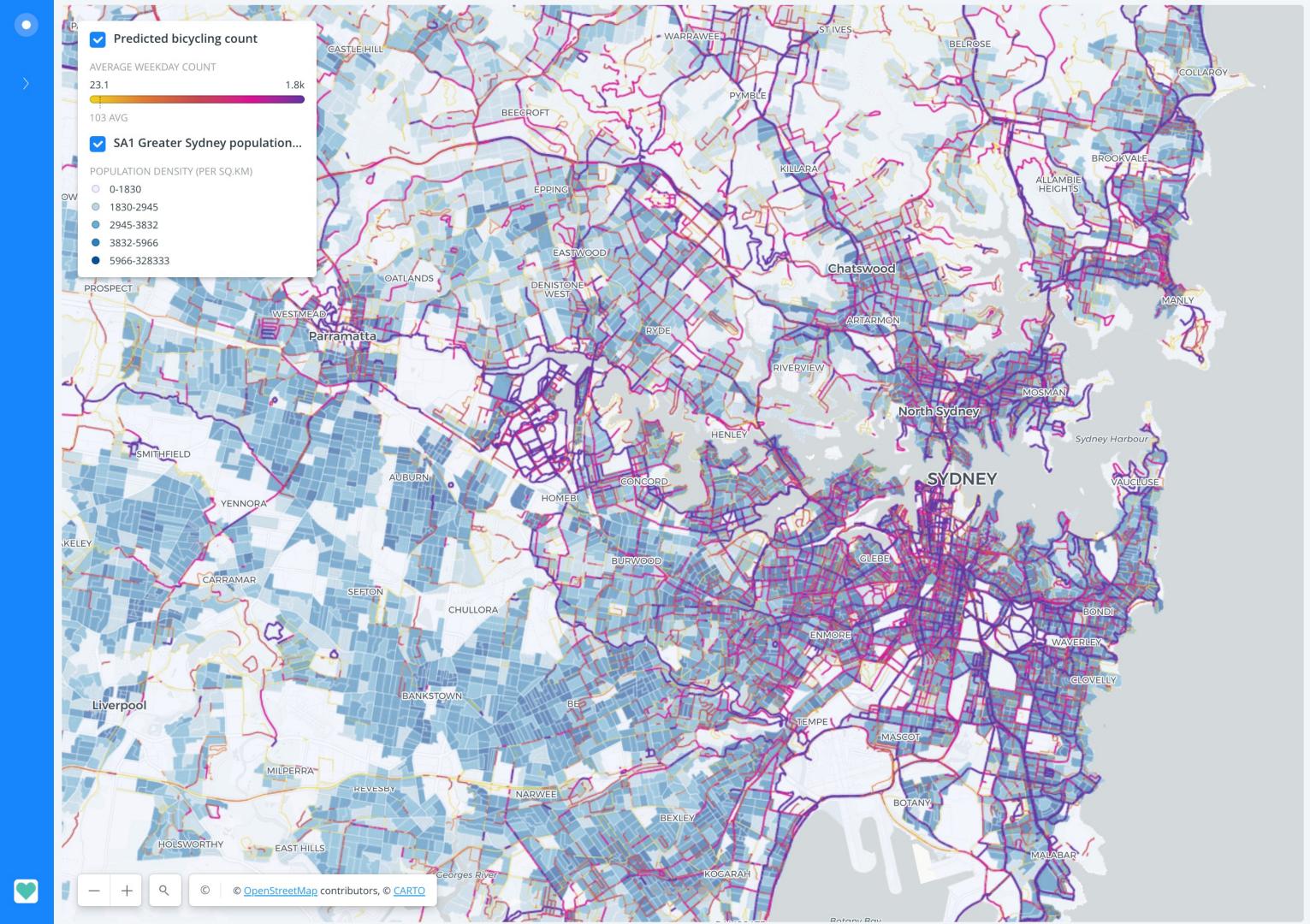


YOY percentage change (weekend)



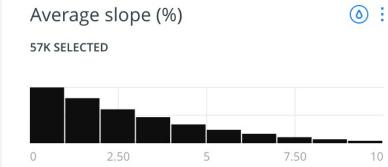
Percentage change (compared to 2019)





Bicycling facility type	۵ :
ALL SELECTED	
NO INFO	29k
MIXED TRAFFIC	12k
SHARED USE	9.9k
	4.4k
BICYCLE ONLY	919
OTHER	2.3k

Q SEARCH IN 13 CATEGORIES



Average count

()

58K SELECTED

Upperbound count

٥ :

58K SELECTED

Conclusions

- 1. Appropriate statistical models can address the sampling bias of crowdsourced data
- 2. Crowdsourced data can be used along with other variables including official counts, land use and population data to estimate network wide cycling traffic
- 3. The quality and quantity of the input data are key (not surprisingly).